Experimental identification of smart material coupling effects in composite structures
نویسندگان
چکیده
Smart composite structures have an enormous potential for industrial applications, in terms of mass reduction, high material resistance and flexibility. The correct characterization of these complex structures is essential for active vibration control or structural health monitoring applications. The identification process generally calls for the determination of a generalized electromechanical coupling coefficient. As this process can in practice be difficult to implement, an original approach, presented in this paper, has been developed for the identification of the coupling effects of a smart material used in a composite curved beam. The accuracy of the proposed identification technique is tested by applying active modal control to the beam, using a reduced model based on this identification. The studied structure was as close to reality as possible, and made use of integrated transducers, low cost sensors, clamped boundary conditions, and substantial, complex excitation sources. PVDF (PolyVinyliDene Fluoride) and MFC (MacroFiber Composite) transducers were integrated into the composite structure, to ensure their protection from environmental damage. The experimental identification described here was based on a curve fitting approach combined with the reduced model. It allowed a reliable, powerful modal control system to be built, controlling two modes of the structure. A Linear Quadratic Gaussian algorithm was used to determine the modal controller-observer gains. The selected modes were found to have an attenuation as strong as -13dB in experiments revealing the effectiveness of this method. In the present study a generalized approach is proposed, which can be extended to most complex or composite industrial structures when they are subjected to vibrations.
منابع مشابه
On the Buckling the Behavior of a Multiphase Smart Plate based on a Higher-order Theory
Magneto-electro-elastic materials are multiphase smart materials that exhibit coupling among electrical, magnetic and mechanical energy fields. Due to this ability, they have been the topic of numerous research in the past decade. In this paper, buckling behavior of a multiphase magneto-electro-elastic rectangular plate with simply supported boundary conditions is investigated, based on Reddy’s...
متن کاملStudy of the Effects of Various Boundary Conditions on the Acoustical Treatments of Double-Panel Structures Lined with Poroelatic Materials
In this paper, the acoustical treatment of double-panel structures lined with poroelatic materials is predicted using analytical method in order to study the effective usage of the various boundary conditions of porous layer and to identify the effective parameters on the transmission loss of the multilayer systems. Therefore, inertia and viscous coupling along with thermal and elastic coupling...
متن کاملPrediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملشناسایی سیستم و طراحی کنترل بهینه با استفاده از الگوریتم ژنتیک برای کنترل ارتعاشات یک بال هوشمند
A solution to the problem of identification and control of smart structures is presented in this paper. Smart structures with build-in sensors and actuators can actively and adaptively change their physical geometry and properties. As a particular example, a representative dynamic model of a typical fighter vertical tail, identified as the smart fin, is considered. Piezoelectric patches, which ...
متن کاملMulti-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM
In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...
متن کامل